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Short Papers

TE and TM Modes of Some Triangular

Cross-Section Waveguides Using Superposition

of Plane Waves

P. L. OVERFELT AND I). J. WHITE

Abstract — Exact transverse electric and magnetic mode solutions of four

triangular cross-section wavegnides have been found via a new general

method using Snell’s law and superposition of plane waves. This paper

presents results for 1) equilateral, 2) 30”,30°, 120°, 3) isosceles right, and

4) 30°, 60° right triangular waveguides. The electric and magnetic field

solutions form finite sums of separable rectangular harmonics and are the

only waveguides of triangular cross section for which such solutions have

been found.

I. INTRODUCTION

It is possible to superpose four plane waves of the form

il=EO, exp(–jkO~,.7), i=l,2,3,4 (1)

and find the complete set of transverse electric (TE) and trans-

verse magnetic (TM) modes of a rectangular waveguide with

perfectly conducting walls [1]. These plane waves are reflections

of one initial wave from each of the waveguide walls. They are

related by Snell’s law and possess equal amplitudes but different

phases. Thus, beginning with an arbitrary plane wave, it is

possible to generate a complete set (which may be infinite) of

wave propagation vectors which characterizes many waveguides

of polygonal cross section and derive exact expressions for the

longitudinal components of the electric and magnetic fields by

superimposing waves in the form of (l).

These fields must obey the required boundary conditions for

perfect conductors, i.e., zero tangential electric field or zero

normal derivative of the longitudinal magnetic field on the

boundaries. If these boundary conditions can be satisfied, then

the superimposed plane waves provide some of the possible

waveguide modes.

The limitation of attempting the solution of an N-sided cross-

section waveguide resides in the tedious algebra associated with

computing the wave propagation vectors and applying the

boundary conditions for the electric and magnetic fields. Com-

puter algebra [2] has been helpful in this regard, but we have

restricted our present investigations to those specific triangular

cross-section waveguides which give the simplest types of solu-

tions [3].

Using a new general method based solely on Snell’s law and

superposition of plane waves, complete sets of TE and TM modes

for triangular waveguides have been determined for the following

cross sections: 1) equilateral, 2) 30°, 30°, 120°, 3) isosceles right,

and 4) 30°, 60° right. Solutions of these four cross sections form

finite sums of rectangular harmonics and are the only triangular

waveguide solutions which have been found.

Analytic solutions for the isosceles right [4], [5] and equilateral

[6] triangular wavegtiides have been developed previously using
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Fig. 1. Cross section of isosceles right triangular waveguide.

specialized techniques which are unique to a particular geometry.

The solution for the isosceles right cross section provides a

complete mode set, but the equilateral solution given by

Schelkunoff does not provide a complete mode set, i.e., the

“odd” modes are missing. This point will be elaborated in

Section III and the Appendix.

This method cart be extended and used for a number of

polygonaf waveguides and can provide closed analytic expres-

sions for the possible modes, although complete sets are not

always obtained. These solutions provide a check on the accuracy

of eigenfunctions and cutoff frequencies obtained when ap-

proximate numerical techniques [7]–[15] are applied to more

general wavguide cross sections,

In Section II, the wave vectors are presented, exact expressions

for the TE and TM modes with associated eigenvalues are de-

termined, and the lowest order cutoff wavenumbers are computed

for each of the four speciaf cross sections.

In Section III, some three-dimensional and contour plots of

dominant modes are presented and discussed. Also in Section III

and the Appendix, the equilateral triangular waveguide solutions

are compared with those of Schelkunoff showing that they, (both

TE and TM) do not provide a complete mode set.

II. THEORY

We introduce an initial wave vector of the form

z
k,=e&+@+y2=+

lk,\
(2)

where a, /3, and y are the direction cosines of ~e vector. Using

Snell’s law in vector form [16], the wave vector k. reflected from

the j th wall is

(3)

where %1 is the unit normal to the j th wall and k, is the incident

unit wave ~ector given by (2).

Using this incident wave vector, the set of reflected unit wave

vectors can be generated by iterating (3). For the special geom-

etries considered, these sets are finite. For arbitrary interior
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TABLE I

TM AND TE MODESFORFOUR TRIANGULAR WAVEGUIDES

Triangular

cross section ‘IN rriodes ‘I’S modes Eigenvalues (n, n integer)

Isosceles Ez = sin klx sin k2y Hz = cos klx COS k2y kl = rmla; k2 = nwla

right

- sin k2x sin kly + COS k2x cOS kly

30”-60” right Ez = sfn klx sin k2y Hz = cOS klx COS k2y kl = umla; k2 = nxlaf~

+ sln k3x sin k+y + COS k3x COS kqy k3 = (m-n) v/Za; kh = (n+3m)./2aJ~

+ sin k~x sin k6y + COS k5x COS k6y k5 = (m+n)m/2a; k6 = (n-3m)~/2a/~

Equilateral H(l) = COS 2klx cos 2k2y k, = 2m./a6; k2 = 2n.13a~(l) = Sin 2klx sin 2kzy z

z

+ sin kax sin k+y + COS k 3X COS kby k3 = (m+n)2n/af~; k+ = (n-3m)2r/3a

+ sin k5x sin k6y + .0S k5x COS k6y ks = (m-n) 2m/a/~; k6 = (n+3~)2r/3a

H(2) = cm. 2klx sin 2k2y
E(2) = Sin 2k1x COS 2kzy z

z

- sin k3x cos kky - cos k3x sin kqy

- sin k5x cos k6y - cos k5x sin k6y

E= = sin klx sin k2y Hz = COS k ,X COS k2y kl = 2m.n/a; k2 = 2nTla4~

- sin k3x sin k~y + COS k 3X cOS kky k3 - (m+ri)./a; kq = (3M-n)./a/~

+ sin k5x sin k6y + cOS k 5X COS k ~y k5 - (m-n)T/a; k6 = (3m+n)T/a/3

Isosceles

(120”)

Isosceles right:

30, 60° right:

Equilateral:

l~o” i~osceles:

TMmodes; m#O, n#O, m#n

TMM~ = TM~~

TE modes; TEm,, = TEnm
Coordinate system as in Fig. 1 with 30° angle at origin.
TMmodes; m#O, rz#O, m#n, n #3m

TM31=TM24=TM15

TE modes; TE02 = TEII, TE12 = TE20
All modes; (m + H) and (m – n) are even
TM(l) modes; m+O, n+O, rn #n, n#3m
TM(2) modes; ~ # 0, ~ # n

rEfl) modes; --- -TE~~) = TE&)

rE(2) modes; n # O (TE~~) does not exist), n # 3m

Coordinate system as in Fig. 2 with 120° angle at origin
and adjacent (equal) sides of length a,
TM modes; nz #O, }z#O, m#n, n#3m

TM31 = TM15 = TM24

TE modes; TE02 = TEII, TE13 = TE20, TE22 = TE04
All modes; (m + tz) and (wz – rz) are even.

angles, the resulting sets are unbounded. Each vector will have

the same z-component y, since the wall normals ~, have only x

and y components. The direction cosine y determmes the phase

velocity of the wave down the guide and is not shown explicitly

in what follows.

Having determined the complete set of propagation vectors,

the z-component of the electric field can be written as

(4)

where N is the total number of wave vectors, F = xi+ y?, and

where E, = O on the waveguide boundary. The z-component of

the magnetic field can be written similarly, subject to i3Hz /dn = O

on the boundary.

For example, the TE and TM modes for an isosceles right

triangular waveguide have been found as follows (see Fig. 1). The

wall normals are

it,=%, fi2=f’, it3=(2-f’)/Ji. (5)

Substituting (2) and (5) into (3), the complete set of transverse

wave propagation vectors is determined

(6)
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TABLE II

SUMMARYOFWAVE PROPAGATIONVECTORSFORFOUR

TIUANGULAR WAVEGUIDES

Triangular Number of Rectangular.
cross section k vectors Form of k vectorsa harmonic sum

Isosceles right 8 [ai, t3t]; [t3f, a~l 2

30-60” right 12 [ai)B;l; l/2[(a-L3/T)i, (6+a/3)+l; 3

Equilateral 12(6)b [ai, Bi]; l/2[(a-E{7)i, (6+aJ7)~l; 3

Isosceles 12 [a~,6~l; l/2[(a-&’7)~, (B+a/3)i]; 3

l/2[(a+B/~)i, (E-a/~)i]

‘Notation means all the sign permutations of the coefficients of ~and ~ to form a

vector. Hence, [a~,/3fi] means all of the vectors in the left-hand column of (6), while

[~ ~, af’] gives the right-hand set of vectors.

bSee text.

a

R,=;, R2=(; –&; )/2
~2

-,.
N3=(x+fi7))2

N1

?

\

30° x

I J“=–./ 3

k

a
60”-

~3

Fig. 2. Cross section of equilateral triangular wavegmde.

Substitution into (4) gives E: for the TM modes

E = Eole–Jko~xe–Jko~Y + Eo2eJko~xe–Jko~Y
2

+ Eo3e–Jk@xeJkoflY + EMeJko”xeJkobY

+ E05 e–Jkohe-JkOu.V + Eo6e j%~xe-Jko~.v

+ ~07 e–J@xeJ&v + Eo8e j!@xejLwy (7)

where the boundary conditions are E= = O on y = O, x = a, x = y

(see Fig. 1). The first condition requires E03 = – EOI, ~04 = – EOZ,

E07 = – E05, E08 = – E06 for all x. The second condition is

satisfied by E02 = – Eol exp (–2jlcoaa) and Eob =

– E05 exp ( – 2 jko/la), while the last condition requires Eol = E05

and

koa=m~/a=kl, kofi=n~/a=k2 (8)

where m and n are integers. Substitution of these results into (7)

gives

E, = sinklxsink2y –sink2xsinkly (9)

which determines the TM modes for the isosceles right triangular

waveguide. A similar process for the TE modes yields

Hz = cosklxcoskzy +coskzxcoskly (lo)

where the appropriate boundary conditions are 8 H, / 8y = O on
y=O, 8Hz/t?.x=0 on x-a, and 8Hz/8x– JHZ/~y=O on

x = y. Applying the method of superposition of plane waves

outlined above, closed-form mode solutions of other triangular

cross sections have been expressed as sums of rectangular

harmonics. These solutions are given in Table 1. The correspond-

ing wave propagation vectors are given in Table H.
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TABLE III

CUTOFFWAVENUMBERFORFOUR TRIANGULAR WAVEGUIDES

Cross section Modes (inn)
(kc)m/(kc):o (kc)~o

Isosceles right TEO1 1 nla

TE1l 1.414

TE02 2

~lz> ‘rf’flz 2.236

30-60” Right TEII> TEOZ
b

1 2Tfa{~

‘TE13, ~zo 1.732

TE22> ~oq 2

‘E31. Tf431. TE24. ~2+, TE15, ‘Tt415 2.646

Equilateral

‘/o stands for lowest order mode

b Modes which have the same superscript (or no superscript) and the same cutoff

wavenumber are actually the same mode regardless of them m, n mdlces.

“Modes wh,ch have different superscripts, the same m, n indices (either TE or TM), and

the same cutoff wavenumbers are degenerate modes as in the case of the square

wavegulde.

The general unit propagation vector for any right triangul,

cross section is

L,, =(+acos2n$ *~sin2n@)2

+(~asin2i3@ +~cos2n+)~, rZ=o,l,2, ..: (1 ,

where @ is one of the interior angles. The eight possible sign

combinations represented by (11) can be grouped as two subsets

of four, in each of which three signs are the same. The resulting

sets are

{(+++-) (++-+) (--+-) (---+)}

and

{(+-++) (+---) (-+++) (-+--)}

Each subset, when reduced, becomes a sum of rectangular

harmonic terms, e.g., sin kl .x sin k2 y. For an arbitrary interior

angle ~, each wave vector IH is distinguishable and the general

solution would require an infinite set. Two wave vectors, i.e., ~~
A

and k,,, ( n # n‘ ), are indistinguishable when the sine/cosine

arguments in (11) differ by a multiple of 2 T. This degeneracy

occurs for those values of the interior angle given by @= v/m,

where m is an integer, For these discrete angles, the solutions can

be represented by a finite set of rectangular harmonics.

Using the initial wave vector (2), the two subsets of four wave

vectors which result for the right triangle become a single set of

six for the equilateral. Using the initial wave vector, ~, = a2 – ~-j

+ y2 generates a second set of six vectors which is given in Table

II. Imposing the boundary conditions for TM modes, the result-

ing electric field expressions obtained from each wave vector set,

Ez, and E,,, respectively, are given by

E=, = EO1(eJzAly sin2klx – e-Jk4Lsink3.x

– ~-Jh,Y sin k5x) (Kh)

and

E=, = Eoz(e-J2Az” sin2klx – eJL~Vsin k3x

_ e/~6J sin k5x) (lzb)

with respect to the coordinate system shown in Fig. 2. Real

solutions are obtained by taking the linear combination E= = E.

+ E=, and are given in Table I. The + and – solutions corr~~

spend to modes of even and odd symmetry, but have the same

phase velocity. Similar results are obtained for the TE modes.

The cutoff wavenumbers are found by setting y = O in (2),

giving

a2+/3z=l. (13)

This relationship for the isosceles right triangular waveguide,

together with (8), gives

(k,)~,n = n-2(m2 + n2)/a2 (14)

for the cutoff wavenumber. Cutoff wavenumbers for the other
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Fig. 4. TE&) mode for an equilateral triangular wavegtide (even

waveguide cross sections are

solution).

30,60° right: (kC)~,, = T2(m2 + n2/3)/a2 (15)

Equilateral: (k,):,, = (4 T)2(Wr2 + n2/3)/3a2 (16)

30,30,120°: (kC)~,, = 4m-2(m2 + n2/3)/a2. (17)

Values for the four lowest modes in each waveguide geometty are

given in Table III.

III. RESULTS

Contour and three-dimensional plots for the lowest order modes

in the 30,60° right and equilateral triangular waveguides are

show”n in Figs. 3– 5. The 30,60° right triangular TEI ~ mode is

shown in Fig. 3. The TEOI mode does not exist due -to the

restrictions placed on the integers m and n by the boundary

conditions, i.e., (m + n) and (m – n) even. Also, from Table III

it is seen that the TE02 mode and the TEII mode are the same.

That modes with completely different indices have the same

magnitude distribution and phase velocity is unique to triangular

geometries md is a ccmsequence of the nonorthogonal nature of

the triangular solutions.

Figs. 4 and 5 represent the even and odd dominant modes,

respectively, for the equilateral triangular waveguide. The even

mode is an extremurn, while the odd mode is zero along y = O.

Fig. 5. TE~~) mode for an equilateral triangular waveguide (odd solution)

w0
. .

Fig. 6, TM1,O, _ ~ dominant-mode field pattern in triangular resonator with

magnetic walls [17],

These two completely different modes have the same phase

velocity. Although this cross sgction has three-fold symmetry, the

modes are even and odd with respect to only one of the surface

perpendicular bisectors and are a mixture of odd and even modes

about the remaining two.

Fig. 6 is a conto;r plot of the lowest order even mode for a

triangular resonator with magnetic walls [17] obtained using

Schelkunoff’s lowest order TE solution for the equilateral triangu-

lar waveguide (by duality). The previously unrecognized existe~ce

of odd modes is discussed in the Appendix.

IV. CONCLUSIONS

A general approach for solving propagation problems in a

certain class of waveguide cross sections based solely on Snell’s

law ‘and superposition of plane waves has been presented. Exact

eigenfunctions and eigenvalues have been determined for four

waveguides with triangular cross sections. The transverse electric

and magnetic mode solutions presented in Table I satisfy the

standard Neumann and Dirichlet boundary conditions, respec-

tively. These solutions are actually nonseparable solutions of the

Helmholtz equation [18], [19]. For the special ge~metnes consid-

ered, they reduce to finite sums of separable rectangular harmon-

ics. For the equilateral triangular waveguide, it has been shown

that the previous analytic solution has not provided a complete

mode set and that the odd modes with respect to one of the

symmetry axes are missing.
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TABLE IV

T( x, y) AND Hjl): COMPAIUSON BETWEEN MODE INDICES

Case 1 Case 2 Case 3

If If

27r(m+n)
2k1 = —

af7

then

2m(m-n)
2k2 = ~

and

m’ = ya

~,=~
2

m = m’+n’

* = ~*-nf

2rrm
—=k3

ai5

~ . _k+

3a

211n—=
ks

af~

2n(2m~) = ~6

3a

m and n both odd or

both even.

2kl=~ ,

af3

then

2r(rn+2n)
2k2 = ~

and

Z.(G!-n) _ _k4

3a

2m -k—.
5

ad~

2n(2m*) = ~6
3a

m even, n even or odd.

If

2kl=~ ,

a43

then

2“(2m+n)
2k2 = —

3a

and

~,=!
2

n’=m+~

~ . “*3,

n = 2m’

2T(m~) _ k3

ad~

2rr(m+) _ kq
3a

~ = -k5

a f 3

2fl(:2n) = k6

m even or odd, n even.

~\\
\

a

—

a Primed indices are ours: unprlmed indices are Schelkunoff’s.

I ‘\
Flg 7 Alternate coordinate systems for the eqmlateral triangular

guide.

wave-

APPENDIX

Schelkunoff [6] finds both transverse electric (TE) and trans-

verse magnetic (TM) mode solutions for the equilateral triangular

waveguide. For TE waves, he gives a T function (equivalent to

our H,) of

2?rl u

()
T(x, y)=cos — –+b Cos

7r(m-n)(u -w)

3b 2 9b

2Tm u

()

w(n–l)(u–w)
— –+b COS

‘Cos 3b 2 9b

27rn u

()

_+b Cosfr(l-wf)(u -w)
+ Cos —

3b 2 9b
(Al)

where 1, m, and n are integers obeying the relation

m+n+l= (), b=z
20

and

u=xcosa+y sina

v=xcos~+ysin~, p=.+:

w=xcosy+ysiny, y=~+?!
3“

Fig. 7, after Schelkunoff, shows the equilateral triangle, its axes

of symmetry and some possible coordinate systems. The angles a,

/3, and y are the angles made by AO, BO, and CO, respectively,

with the x-axis of a Cartesian coordinate system.
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Choosing the A O line as the x-axis, a = O, and with 1=

– (m + n), (Al) becomes

“x~’=cos[(%+w+ndcos2T(T)y
+ Cos

+ Cos

4%+:)Icos2”(m:2n)y
‘(%+:)lcos’T(’::n)-v(A3)

This coordinate system is related to that used in this paper by a.-.
simple translation (see Fig. 2), which, when applied to solutions

of this paper, gives

()
H(lJ =cos’kl x+? cos’kzy

z
@

()‘coSk’ ‘+; cosk’y

()

+cosk, x+ ~ cosk,y (A4a)

( )“‘p’ ‘Cos’k’ ‘+% “n’k’y

( )“‘coSk’ ‘+* “nk’y

()
-cosk, x+ ~ sink,y (A4b)

where kl – k6 are given in Table I.

Comparing (A3) and (A4), it is seen that Schelkunoff has given

only the even modes H~l). Shown in Table IV are possible
relations between Schelkunoff’s mode indices and those used in

this paper.

Choosing the axes differently (e.g., x’, y’ in Fig. 7, where
~ = 30°) such that x or y lies along a different symmetry axis

(,40, BO, or CO), the modes will be expressed as a mixture of

components, odd and even with respect to that axis. However, the

intrinsic mode symmetry is with respect to the line A O indepen-

dent of the coordinate system chosen.

The equilateral triangular geometry has been proposed for

waveguide Y circulators [20] and triangular resonators [17], [21].

In both [17] and [20], Schelkunoff’s results in (A3) were used. It is

suggested that the existence of the odd H~2) modes as well as the

even H~l) modes is important in actual device applications.

ACKNOWLEDGMENT

The authors are indebted to H. L. Lindblom of the Naval

Weapons Center for his three-dimensionaf and contour mode

plots. We are also indebted to Prof. G. E. Everett of the Univer-

sity of California at Riverside for many stimulating discussions.

[1]

[2]

[3]

[4]

I@FERBNCES

D. J. White and G. Everett, “Adding plane waves to find the complete

TM aud TE wave solutions for metaflrc rectangular waveguide,” ,4 m. J.

Ph.vs , vol. 51, no 12, pp 1115-1119, Dec 1983.

R. Pavelle, M. Rothstem, /tud J. Fitch, “Computer algebra,” SCZ. ,4 m.,

vol. 245, no, 6, pp. 136-154, Dec. 1981.

D, J. White, P. L. Overfelt, aud G. E. Everett, “Guided wave propa-

gauon by the superposition of plaue waves in trmngular waveguides with

perfectly conducting walls,” in 1982 Int. Symp. Dig., Antennas and

Propagation, vol. 2, 1983, pp. 664-666.

C. C. Johnson, Fteld and Wave Electroc&am~cs. New York: McGraw-

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Hill, 1965, pp. 136-137,

P. M. Morse and H. Feshbach, Methods of Theoretical Ph,vsm, vol. I

New York: McGraw-Hill, 1953, pp. 755-757.

S. A. Schelkunoff, Efecfrontagrtenc Waues. New York: Van Nostrand

1943, pp. 393-397.

A. IE. Iashkin, “A method of approximate calculations of waveguides

with complicated cross-sectional form,” Rudzo Eng. Electron. Phys,, vol.

3 (Eng. Trans.), pp 151-155, Oct. 1958.

D. T.-Thomas, ‘; Functional approximations for solving boundmy value

problems by computer,” IEEE Trans. Microwave Thecvy Tech,, vol.

MTT-17, pp. 447-454, Aug. 1969.

A. IE. Iashkin, “A method of approximate calculations for waveguides of

triangular and, trapezoidal cross-section,” Radtotekh. Elektron. (USSR),

VO]. 13, pp. 1-9, Oct. 1958.

R. M. Bulley aud J. B. Dawes, “Computation of approximate poly-

nomial solutions to TE modes m an arbitrmily shaped waveguide,” IEEE

Trans. Microwuue Theory Tech., vol. M’IT-17, pp. 440-446, Aug. 1969.

R. M. Bulley, “Anafysis of the arbitrarily shaped waveguide by poly-

nomial approximation,” IEEE Trans, Mlcrowaoe Theory Tech., vol.

MTT-18, pp. 1022-1028, Dec. 1970.
F. L. Ng and R. H. T. Bates, “Null-field method for waveguides of
arbitrary cross-section,” IEEE Trans. Mtcrowaue Theory Tech,, VOL

MTT-20, pp. 658-662, Ott 1972.

J. Mrtztrmdar, “A method for the stndy of ‘IF. and TM modes in

waveguides of very generaJ cross-section,” IEEE Trans. Mlcrowuue The-

ory Tech., vol. MTT-28, Sept 1980.

H. H, Memke, K. P. Lange, and J. F. Ruger, “ TE- and TM-waves in

waveguides of very generaf cross- sechon,” Proc. IEEE, pp. 1436– 1443,

Nov. 1963.

F. L. Ng, “Tabulation of methods for the numerical solution of the

hollow wavegtude problem,” IEEE Trans Mwowaue Theoty Tech , vol.

M’IT-22, pp 322-329, Mar. 1974.

S, Cornbleet, Mwrowaoe Opttcs. New York: Academic Press, 1976, pp.

353-356.

J. Hekzajn and D S. James, “Planar trianguhm resonators with magrretic

walls,” IEEE Trans. Mtcrowaue Theo~ Tech,, vol. MT1-26, pp. 95– 100,

Feb. 1978.

D. S. Moseley, ” Nonseparable solutions of the Helmholtz wave equation,”

Quart. Appl. Math., vol. 22, pp. 354-357, 1965.

P. J, Lttypaert aud D. H. Schoonaert, “On the synthesis of waveguides

and cavities realized with nonsepmable solutions of the Helrnholtz wave

equation;’ IEEE Trans. Mtcrowaoe Theo~ Tech., vol. MTT-23, pp.

1061-1064, Dec. 1975.

Y. Akarwa. “Operation modes of a waveguide Y circulator,” IEEE

Trans. Mwrowaue Theoiy Tech., vol. M’IT22, pp. 954-960, Nov. 1974.

E. F Kttester and D. C. Charrg, “A geometrical theory for the resonaut

frequencies attd Q-factors of some triangular microstrip patch antennas,”

IEEE Trans. Antennas Propagat., vol. AP-31, pp. 27-34, Jan. 1983.

A GaAs MESFET Self-Bias Mode Oscillator

HIROYUKI ABE

Absiract —A self-bias mode oscillation in a GUAS MESFET, with the

gate terminal kept open in a dc manner, has been analyzed by a large-signal

MESFET circuit model. The circuit simulation demonstrates that the

gate-source Schottky barrier becomes self-biased along with the microwave

oscillation build-rip and that a stable self-bias gate voltage is observed with

a steady-state oscillation. A self-bias mode oscillator, operable with a single

positive dc bias, is realized by rising microwave integrated circnit technol-

ogy.

1. INTRODUCTION

GaAs metal-semiconductor field-effect transistor (MESFET)

oscillator behavior has been investigated by using MESFET

analytical models, including an intrinsic FET and on-chip and
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