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Short Papers

TE and TM Modes of Some Triangular
Cross-Section Waveguides Using Superposition
of Plane Waves

P.L. OVERFELT anp D. J. WHITE

Abstract —Exact transverse electric and magnetic mode solutions of four
triangular cross-section waveguides have been found via a new general
method using Snell’s law and superposition of plane waves. This paper
presents results for 1) equilateral, 2) 30°, 30°, 120°, 3) isosceles right, and
4) 30°, 60° right triangular waveguides. The electric and magnetic field
solutions form finite sums of separable rectangular harmonics and are the
only waveguides of triangular cross section for which such solutions have
been found.

I. INTRODUCTION

It is possible to superpose four plane waves of the form
E = E, exp(— jkok,-7),  i=1,2,3,4 (1)

and find the complete set of transverse electric (TE) and trans-
verse magnetic (TM) modes of a rectangular waveguide with
perfectly conducting walls [1]. These plane waves are reflections
of one initial wave from each of the waveguide walls. They are
related by Snell’s law and possess equal amplitudes but different
phases. Thus, beginning with an arbitrary plane wave, it is
possible to generate a complete set (which may be infinite) of
wave propagation vectors which characterizes many waveguides
of polygonal cross section and derive exact expressions for the
longitudinal components of the electric and magnetic fields by
superimposing waves in the form of (1).

These fields must obey the required boundary conditions for
perfect conductors, ie., zero tangential electric field or zero
normal derivative of the longitudinal magnetic field on the
boundaries. If these boundary conditions can be satisfied, then
the superimposed plane waves provide some of the possible
wavegnide modes.

The limitation of attempting the solution of an N-sided cross-
section waveguide resides in the tedious algebra associated with
computing the wave propagation vectors and applying the
boundary conditions for the electric and magpetic fields. Com-
puter algebra [2] has been helpful in this regard, but we have
restricted our present investigations to those specific triangular
cross-section waveguides which give the simplest types of solu-
tions [3].

Using a new general method based solely on Snell’s law and
superposition of plane waves, complete sets of TE and TM modes
for triangular waveguides have been determined for the following
cross sections: 1) equilateral, 2) 30°, 30°, 120°, 3) isosceles right,
and 4) 30°, 60° right. Solutions of these four cross sections form
finite sums of rectangular harmonics and are the only triangular
waveguide solutions which have been found.

Analytic solutions for the isosceles right [4], [S5] and equilateral
[6] triangular waveguides have been developed previously using
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Fig. 1. Cross section of isosceles right triangular waveguide.

specialized techniques which are unique to a particular geometry.
The solution for the isosceles right cross section provides a
complete mode set, but the equilateral solution given by
Schelkunoff does not provide a complete mode set, i.e., the
“o0dd” modes are missing. This point will be elaborated in
Section 1IT and the Appendix.

This method can be extended and used for a number of
polygonal waveguides and can provide closed analytic expres-
sions for the possible modes, although complete sets are not
always obtained. These solutions provide a check on the accuracy
of eigenfunctions and cutoff frequencies obtained when ap-
proximate numerical techniques [7]-[15] are applied to more
general wavguide cross sections.

In Section II, the wave vectors are presented, exact expressions
for the TE and TM modes with associated eigenvalues are de-
termined, and the lowest order cutoff wavenumbers are computed
for each of the four special cross sections.

In Section III, some three-dimensional and contour plots of
dominant modes are presented and discussed. Also in Section IIT
and the Appendix, the equilateral triangular waveguide solutions
are compared with those of Schelkunoff showing that they, (both
TE and TM) do not provide a complete mode set.

II. THEORY
We introduce an initial wave vector of the form
k,=otX+BY—1~j(Z=l7€>| (2)

where a, B, and y are the direction cosines of the vector. Using
Snell’s law in vector form [16], the wave vector k, reflected from
the jth wall is

k, =k —28 (%, N) (3)

where I'\\/; is the unit normal to the jth wall and k, is the incident

_ unit wave vector given by (2).

Using this incident wave vector, the set of reflected unit wave
vectors can be generated by iterating (3). For the special geom-
etries considered, these sets are finite. For arbitrary interior
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TABLE1
TM AND TE MODES FOR FOUR TRIANGULAR WAVEGUIDES

Triangular

cross section ™ modes

TE modes

Eigenvalues (m, n integer)

#

Isosceles E
right

sin kx sin k,y

= sin kyx sin k;y

1t

30°~60° right E_ = sin kyx sin kpy H

+ sin kax sin k,y

H = cos kjx cos ky,y

cos kyx cos k,y

+ cos kgx cos k,y

k) = mn/a; k, = un/a

+ cos kyx cos ky

k; = mn/a; k, = an/a/3

kg = (m-n)n/2a; k, = (n+3m)7/2a/3

+ sin kgx sin kgy + cos kgx cos kgy kg = (mtn)n/2a; kg = (n-3m)r/2ay3
Equilateral Eil) = sin 2Zk;x sin 2k,y Hil) = cos 2k x cos 2k,y ky = 2mn/ad3; k, = 2nm/3a
+ sin kax sin k,y + cos kax cos k,y ky = (m+n)2r/a/3; k, = (n~3m)2v/3a
+ sin kgx sin kgy + cos kgx cos kgy kg = (m-n)2x/a/3; kg = (n+3m)27/3a
E:Z) = sin 2k;x cos 2k,y Hiz) = cos 2k)x sin 2k,y
=~ sin kgx cos k,y - cos kjx sin k,y
- 8in kgx cos kgy - co8 kgx sin kgy
Isosceles Ez = sin k;x sin k,y Hz = cos k;x cos kyy k) = 2mn/a; k, = 2nn/a/3
(120°)
- sin kgx sin k,y + cos kax cos k,y k3 = (mn)n/a; k, = (3mn)n/a/3
+ sin kgx sin kgy + cos kgx cos kgy kg = (m-n)r/a; kg = (3m+a)n/av3

Isosceles right: TM modes; m#0, n# 0, m+# n

Tan = TMnm

TE modes; TE,,, = TE,,

mn

30, 60° right:

Coordinate system as in Fig. 1 with 30° angle at origin.

TM modes; m#0, n#0, m#*n, n#3m
TMy; =TM 5, = TM;;

TE modes; TEg, = TE;;, TE 3 = TE,,
All modes; (m + n) and (m — n) are even

Equilateral:
TMP modes; m+0, m+n
TE® modes; ----TE{} = TE{Y

TM®D modes; m#0, n#0, m+n, n+3m

TE® modes; n+0 (TE{%) does not exist), #n# 3m

120° isosceles:

Coordinate system as in Fig. 2 with 120° angle at origin

and adjacent (equal) sides of length a.
TM modes; m=0, n£0, m#n, n#3m

TMa; = TM;5 = TM,,

TE modes; TEq, = TE,;, TE;; = TE,q, TE,, = TE,
All modes; (m + n) and (m — n) are even.

angles, the resulting sets are unbounded. Each vector will have
the same z-component v, since the wall normals ]\Ag have only x
and y components. The direction cosine y determines the phase
velocity of the wave down the guide and is not shown explicitly
in what follows.

Having determined the complete set of propagation vectors,
the z-component of the electric field can be written as

N
EZ =Y Eo, exp(—jkjc,'?) (4
i=1

where N is the total number of wave vectors, 7= xX + y f/', and
where E, =0 on the waveguide boundary. The z-component of
the magnetic field can be written similarly, subject to dH, /dn=0
on the boundary.

For example, the TE and TM modes for an isosceles right
triangular waveguide have been found as follows (see Fig. 1). The
wall normals are

N=Xk, N=Y, N=(X-1)/2. (5

Substituting (2) and (5) into (3), the complete set of transverse
wave propagation vectors is determined

'1\c1=a5(+Bf’ 7(5=B)A(+aA
ky=—aX+BY k,=—pXk+a¥

o= aX—BY ko= pR-ab ©)
’l\c4=~aj’—ﬁf’ 7(8=—,3)A(—af/.
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TABLEII
SUMMARY OF WAVE PROPAGATION VECTORS FOR FOUR
TRIANGULAR WAVEGUIDES
Triahgular Number of . Rectangular .
cross section k vectors Form of k vectors® harmonic sum
Isosceles right 8 [a)A(,B';]; [Bi, o¥] 2
30-60° right 12 [oX,8Y]; 1/2[(a-8/DX, (R+ayDT1; 3
1/2((a+8/D)X, (B-avD)Y]
Equilateral 12(6)b [a;(, B;I]; 1/2[(0‘—8/-3-);(, (B+a/§‘)‘}]; 3
1/2[(a*8/DX, (B-arDY]
Isosceles 12 (X, BY]); 1/20(a-8/DX, (B+arDi]; 3

1/2[Cat8/ DX, (8-a/DY]

*Notation means all the sign permutations of the coefficients of X and ¥ to form a
vector. Hence, [aX,BY] means all of the vectors in the left-hand column of (6), while

(BX,a¥] gives the right-hand set of vectors.
bSee text.

Ry =% Ny=(X-va¥y/2

Ny =(X+V3¥) /2

Fig. 2.

Substitution into (4) gives E, for the TM modes
E, = Eg e ko< skoby o E . gkonxg=skoly
+ Eyye tkovxgskoBy 4 Emejkoﬂxejkoﬁy
+ Epge/koBxemskowy + Ei o ekoBxg—skoay

+ EO7e—Jkoﬁxejko'x.V + Eosejkoﬁxejkoﬂy

(7
where the boundary conditions are E,=0on y=0, x=a, x=y
(see Fig, 1). The first condition requires Egy = — Ey;, Egy = — Egy,
Ey; = — Eps, Egg=— Eys for all x. The second condition is
satisfied by Eg, = — Ey exp (—2jkpaa) and Ey =

— E,s exp(— 2 jkyBa), while the last condition requires Ey = Eqs
and

kqo=mmn/a=k,, koB=nn/a=k,

(8)

where m and » are integers. Substitution of these results into (7)

~
Ny
e )
x = aV3
2

Cross section of equilateral triangular wavegwuide.

gives

E, =sink,xsink,y—sink,xsink; y 9
which determines the TM modes for the isosceles right triangular
waveguide. A similar process for the TE modes yields

H,=coskyxcosk,y+cosk,xcosk,y (10)
where the appropriate boundary conditions are dH,/dy =0 on
y=0, 0H,/6x=0on x=a, and dH, /Ix— JH, /3y =10 on
x =y. Applying the method of superposition of plane waves
outlined above, closed-form mode solutions of other triangular
cross sections have been expressed as sums of rectangular
harmonics. These solutions are given in Table I. The correspond-
ing wave propagation vectors are given in Table IL
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TABLE III
CUTOFF WAVENUMBER FOR FOUR TRIANGULAR WAVEGUIDES

a

k k
Cross section Modes (mn) (k ) /( c)lo (¢ c)zo
Isosceles right TEq, 1 n/a
TR, 1.414
TE,, 2
TEyp, Ty, 2.236
b —
30-60° Right TEy;, TEq, 1 2n/a/3
TE g, TEq 1.732
TEpy, TEgy 2
TEgq, T3y, TE,,, TMp,, TE;g, TM;, 2.646
c
2
Equilateral TES%), TEgl) 1 4m/3a
il (2 1.732
TEg{), Tng), TES%), TEsg) 2
1 1 2 2
el el w(?, P 2,646
30-30-120° TE;,, TEps 1 4n/a/3
TE|3, TE,, 1.732
TEz2» TEqy 2
TEgy, T3y, TEgy, ™y, TEys, ™5 2.646

2¢o stands for lowest order mode

YModes which have the same superscript (or no superscript) and the same cutoff
wavenumber are actually the same mode regardless of their m, n indices.

“Modes which have different superscripts, the same m, # indices (either TE or TM), and
the same cutoff wavenumbers are degenerate modes as in the case of the square

waveguide.

The general unit propagation vector for any right triangular
cross section is

,=(+acos2n¢ + Bsin2ne) X

+(iasin2n¢i,8cos2n¢)f/, n=0,1,2,--+ (11)
where ¢ is one of the interior angles. The eight possible sign
combinations represented by (11) can be grouped as two subsets
of four, in each of which three signs are the same. The resulting

sets are
((++52) (++-4) (=+2) (-=-4))

and
((h=+4) ($===) (—++5) (-+-))

Each subset, when reduced, becomes a sum of rectangular
harmonic terms, e.g., sin klx sin k, y. For an arbitrary interior
angle ¢, each wave vector k is distinguishable and the general
solution would require an 1nf1n1te set. Two wave vectors, i.e., k
and k,, (n#n’"), are indistinguishable when the sme/cosme
arguments in (11) differ by a multiple of 2#. This degeneracy
occurs for those values of the interior angle given by ¢ = 7/m,
where m is an integer. For these discrete angles, the solutions can
be represented by a finite set of rectangular harmonics.

Using the initial wave vector (2), the two subsets of four wave
vectors which result for the right triangle become a smgle set of
six for the equilateral. Using the initial wave vector, k, = a% — 85 $

+ yZ generates a second set of six vectors which is given in Table
II. Imposing the boundary conditions for TM modes, the result-
ing electric field expressions obtained from each wave vector set,
E_ and E_, respectively, are given by

bl . — .
E = Em(e’“"ﬂ sin2k;x — e ke sin kyx

—e*rsinksx) (12a)
and
E. = Eg,(e7/*2¥ sin2k; x — e/*4¥sin ks x

— ek sinksx) (12b)

with respect to the coordinate system shown in Fig. 2. Real
solutions are obtained by taking the linear combination E E,
+ E_ and are given in Table I. The + and — colutione corre.
spond to modes of even and odd symmetry, but have the same
phase velocity. Similar results are obtained for the TE modes.

The cutoff wavenumbers are found by setting y =0 in (2),
giving .
o+ B =1. (13)

This relationship for the isosceles right triangular waveguide,
together with (8), gives

(14)

for the cutoff wavenumber. Cutoff wavenumbers for the other

(kY =" (m* +n%) /a®
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Fig. 3. TEy; mode for a 30, 60° right triangular waveguide.
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Fig. 4. TE mode for an equilateral triangular waveguide (even solution).

waveguide cross sections are

30, 60° right: (k,)>,, = 7*(m?* + n>/3) /a> (15)
Equilateral: (k)% = (47)'(m?*+n%/3) /3% (16)
30,30,120%: (k)% =dn?(m?>+n?/3)/a®.  (17)

Values for the four lowest modes in each waveguide geometry are
given 1n Table III

II1. RESULTS

Contour and three—d1mens1onal plots for the lowest order modes
in the 30,60° right and equilateral triangular waveguides are
shown in Figs. 3-5. The 30,60° right triangular TE,; mode is
shown in Fig. 3. The TE, mode does not exist due -to the
restrictions’ placed on the integers m and n by the boundary
conditions, i.e., (m+ n) and (m — n) even. Also, from Table III
it is seen that the TEj, mode and the TE;; mode are the same,
That modes with completely different indices -have the same
magnitude distribution and phase velocity is unique to triangular
geometries and is a.consequence of the nonorthogonal nature of
the triangular solutions.

.Figs. 4 and 5 represent the even and odd dominant modes,
respectively, for the equilateral triangular waveguide. The even
mode is an extremum, while the odd mode is zero along y = 0.

165

Fig. 5. TE® mode for an equilateral triangular waveguide (odd solution).
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Fig. 6. TM, ; _; dominant-mode- field pattern in triangular resonator with
magnetic walls [17].

These two completely different modes have the same phase
velocity. Although this cross section has three-fold symmetry, the
modes are even and odd with respect to only one of the surface
perpendicular bisectors and are a mixture of odd and even modes
about the remaining two.

Fig. 6 is a contour plot of the lowest order even mode for a
triangular resonator with magnetic walls [17] obtained using
Schelkunoff’s lowest order TE solution for the equilateral triangu-
lar waveguide (by duality). The previously unrecognized existence
of odd modes is discussed in the Appendix.

Iv. CONCLUSXONS‘

A general approach for solving propagation problems in a
certain class of waveguide cross sections based solely on Snell’s
law and superposition of plane waves has been presented. Exact
eigenfunctions and eigenvalues have been determined for four
waveguides with triangular cross sections. The transverse electric
and magnetic mode solutions presented in Table I satisfy the
standard Neumann and Dirichlet boundary conditions, respec-
tively. These solutions are actually nonseparable solutlons of the
Helmholtz equation [18], [19]. For the spécial geometries consid-
ered, they reduce to finite sums of separable rectangular harmon-
ics. For the equilateral triangular waveguide, it has been shown
that the previous analyti¢ solution has not provided a complete
mode set and that the odd modes with respect to one of the
symmetry axes are missing.
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TABLE IV
T(x, y) AND HV: COMPARISON BETWEEN MODE INDICES
Case 1 Case 2 Case 3
If 1f 1f
2k1=m , 2k1=2_".ni_’ 2“1‘2‘“% ,
av3 ar3 ay3
then then then
_ 27(m~n) _ 27(m+2n) - 2n(2min)
2ky = s, 2k, = EPY 2k, T;
and and and
a
mn = o = n
n'=T n‘—n+2 n' m+2
m = m'+n’ m = 2m' m=n'-m'
n=nmn'-n' n =n'-m! n = 2m'
2m _ ks 2n(min) _ ks Zw(m:n) - ks
a/3 a’3 a/3
2n(m+2n) _ 2n(m-n) _ _ 2r(m—n) _
3a = Ty 3a = ky 3a Ky
2 2 2
J.'-f_.:ks .ﬂ_=_k5 —“%=-k5
ar3 a’3 a’3
27(2min) _ k 21(2m4n) _ " 2n(m+2n) _ X
3a T re 3a 6 3a 3
m and n both odd or m even, n even or odd. m even or odd, n even.
both even.
2Primed 1ndices are ours; unprimed indices are Schelkunoff’s.
v our H,) of
27l u a(m—n)(v—w)
T(x,y)=cos——|—~+b|cos —F
3b\2 9b
2am (u a(n—0D(v—w)
+Co8 —+blcos—— —
3b \2 9b
27rn(u ) a(l-m)(v—w) (A1)
+cos—— | — coOs———————
3b \2 9b
where /, m, and n are integers obeying the relation
a
mn+1=0, b=—rx (A2)
V3
A and
u=xcosa+ ysina
Fig 7 Alternative coordinate systems for the equilateral triangular wave- 20
guide. v=2xcosf+ ysinf, ,B=a+?
. 29
w=xcosy+ ysiny, y=,8+?.
APPENDIX

Schelkunoff [6] finds both transverse electric (TE) and trans-
verse magnetic (TM) mode solutions for the equilateral triangular
waveguide. For TE waves, he gives a T function (equivalent to

Fig. 7, after Schelkunoff, shows the equilateral triangle, its axes
of symmetry and some possible coordinate systems. The angles a,
B, and vy are the angles made by 40, B0, and CO, respectively,
with the x-axis of a Cartesian coordinate system.
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Choosing the A0 line as the x-axis, a=0, and with /=
—(m + n), (Al) becomes

2ax 2

T(x,y) =cos[(m+7)(m+n)

2a9x 27 2a(m+2n)y

+cos| m| —= + — —
a/3 3 3a

2ax 2w 2a(2m+n)y

PUUSE—— _I_ —_ - ————
a3 3 o8 3a

This coordinate system is related to that used in this paper by a

simple translation (see Fig. 2), which, when applied to solutions
of this paper, gives

2a(m—n)y

cos
3a

Cos

+cos . (A3)

a
H® = cosZkl(x + —) cos2k,y

V3

a
+cosk3(x+—‘/—3:)cosk4y

a
+cosk5(x+~—)cosk6y

V3

a
H® = cosZkl( X+ —) sin2k,y

V3

a
—cosk3(x+—)sink4y

V3

a
—cosks(x-i-ﬁ)sinkéy

(Ada)

(Adb)

where k,— kg are given in Table L.

Comparing (A3) and (A4), it is seen that Schelkunoff has given
only the even modes HY. Shown in Table IV are possible
relations between Schelkunoff’s mode indices and those used in
this paper.

Choosing the axes differently (e.g., x’,y’ in Fig. 7, where
a=30°) such that x or y lies along a different symmetry axis
(A0, BO, or C0), the modes will be expressed as a mixture of
components, odd and even with respect to that axis. However, the
intrinsic mode symmetry is with respect to the line 40 indepen-
dent of the coordinate system chosen.

The equilateral triangular geometry has been proposed for
waveguide Y circulators [20] and triangular resonators [17], [21].
In both [17] and [20], Schelkunoff’s results in (A3) were used. It is
suggested that the existence of the odd H!® modes as well as the
even HY modes is important in actual device applications.
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A GaAs MESFET Self-Bias Mode Oscillator
HIROYUKI ABE

Abstract —A self-bias mode oscillation in a GaAs MESFET, with the
gate terminal kept open in a dc manner, has been analyzed by a large-signal
MESFET circuit model. The circuit simulation demonstrates that the
gate-source Schottky barrier becomes self-biased along with the microwave
oscillation build-up and that a stable self-bias gate voltage is observed with
a steady-state oscillation. A self-bias mode oscillator, operable with a single
positive dc bias, is realized by using microwave integrated circuit technol-

ogy.
I. INTRODUCTION

GaAs metal-semiconductor field-effect transistor (MESFET)
oscillator behavior has been investigated by using MESFET
analytical models, including an intrinsic FET and on-chip and
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